Generating retinal flow maps from structural optical coherence tomography with artificial intelligence

نویسندگان

  • Cecilia S. Lee
  • Ariel J. Tyring
  • Yue Wu
  • Sa Xiao
  • Ariel S. Rokem
  • Nicolaas P. Deruyter
  • Qinqin Zhang
  • Adnan Tufail
  • Ruikang K. Wang
  • Aaron Y. Lee
چکیده

Despite​ ​advances​ ​in​ ​artificial​ ​intelligence​ ​(AI),​ ​its​ ​application​ ​in​ ​medical​ ​imaging​ ​has​ ​been burdened​ ​and​ ​limited​ ​by​ ​expert-generated​ ​labels.​ ​We​ ​used​ ​images​ ​from​ ​optical​ ​coherence tomography​ ​angiography​ ​(OCTA),​ ​a​ ​relatively​ ​new​ ​imaging​ ​modality​ ​that​ ​measures​ ​retinal​ ​blood flow,​ ​to​ ​train​ ​an​ ​AI​ ​algorithm​ ​to​ ​generate​ ​flow​ ​maps​ ​from​ ​standard​ ​optical​ ​coherence tomography​ ​(OCT)​ ​images,​ ​exceeding​ ​the​ ​ability​ ​and​ ​bypassing​ ​the​ ​need​ ​for​ ​expert​ ​labeling. Deep​ ​learning​ ​was​ ​able​ ​to​ ​infer​ ​flow​ ​from​ ​single​ ​structural​ ​OCT​ ​images​ ​with​ ​similar​ ​fidelity​ ​to OCTA​ ​and​ ​significantly​ ​better​ ​than​ ​expert​ ​clinicians​ ​(P​ ​<​ ​0.00001).​ ​Our​ ​model​ ​allows​ ​generating flow​ ​maps​ ​from​ ​large​ ​volumes​ ​of​ ​previously​ ​collected​ ​OCT​ ​data​ ​in​ ​existing​ ​clinical​ ​trials​ ​and clinical​ ​practice.​ ​This​ ​finding​ ​demonstrates​ ​a​ ​novel​ ​application​ ​of​ ​AI​ ​to​ ​medical​ ​imaging, whereby​ ​subtle​ ​regularities​ ​between​ ​different​ ​modalities​ ​are​ ​used​ ​to​ ​image​ ​the​ ​same​ ​body​ ​part and​ ​AI​ ​is​ ​used​ ​to​ ​generate​ ​detailed​ ​inferences​ ​of​ ​tissue​ ​function​ ​from​ ​structure​ ​imaging. INTRODUCTION Advances​ ​in​ ​image​ ​analysis​ ​and​ ​artificial​ ​intelligence​ ​(AI)​ ​have​ ​made​ ​computer-aided​ ​diagnosis (CAD)​ ​widely​ ​applicable.​ ​However,​ ​supervised​ ​machine​ ​learning​ ​usually​ ​requires​ ​a​ ​large number​ ​of​ ​expert-defined​ ​labels,​ ​with​ ​two​ ​main​ ​limitations.​ (Valizadegan,​ ​Nguyen,​ ​and Hauskrecht​ ​2013)​​ ​First,​ ​most​ ​of​ ​these​ ​labels​ ​are​ ​manually​ ​generated​ ​by​ ​clinicians,​ ​which​ ​is​ ​a cumbersome,​ ​time-consuming,​ ​and​ ​consequently​ ​costly​ ​process.​ ​Second,​ ​the​ ​use​ ​of​ ​human generated​ ​annotations​ ​as​ ​the​ ​ground​ ​truth​ ​limits​ ​the​ ​learning​ ​ability​ ​of​ ​the​ ​AI,​ ​given​ ​that​ ​it​ ​is problematic​ ​for​ ​AI​ ​to​ ​surpass​ ​the​ ​accuracy​ ​of​ ​humans,​ ​by​ ​definition.​ ​In​ ​addition, expert-generated​ ​labels​ ​suffer​ ​from​ ​inherent​ ​inter-rater​ ​variability,​ ​thereby​ ​limiting​ ​the​ ​accuracy of​ ​the​ ​AI​ ​to​ ​at​ ​most​ ​variable​ ​human​ ​discriminative​ ​abilities.​ ​Thus,​ ​the​ ​use​ ​of​ ​more​ ​accurate, objectively-generated​ ​annotations​ ​would​ ​be​ ​a​ ​key​ ​advance​ ​in​ ​machine​ ​learning​ ​algorithms​ ​in diverse​ ​areas​ ​of​ ​medicine. Optical​ ​coherence​ ​tomography​ ​(OCT)​ ​is​ ​a​ ​non-invasive​ ​imaging​ ​modality​ ​of​ ​structural​ ​retina​ ​​in vivo​.​ ​Since​ ​its​ ​development​ ​in​ ​1991,​ ​OCT​ ​has​ ​become​ ​essential​ ​in​ ​diagnosing​ ​and​ ​assessing most​ ​vision-threatening​ ​conditions​ ​in​ ​ophthalmology.​(Murthy​ ​et​ ​al.​ ​2016)​​ ​A​ ​recent​ ​advance​ ​in OCT​ ​technology​ ​led​ ​to​ ​its​ ​counterpart,​ ​OCT​ ​angiography​ ​(OCTA),​ ​which​ ​measures​ ​blood​ ​flow in​ ​retinal​ ​microvasculature​ ​by​ ​obtaining​ ​repeated​ ​measurements​ ​of​ ​phase​ ​and​ ​intensity​ ​at​ ​the same​ ​scanning​ ​position.​(Wang​ ​et​ ​al.​ ​2007;​ ​de​ ​Carlo​ ​et​ ​al.​ ​2015)​​ ​While​ ​OCTA​ ​can​ ​theoretically be​ ​obtained​ ​using​ ​the​ ​same​ ​OCT​ ​hardware,​ ​in​ ​practice,​ ​OCTA​ ​requires​ ​both​ ​hardware​ ​and software​ ​modifications​ ​to​ ​existing​ ​OCT​ ​machines.​ ​OCTA​ ​can​ ​visualize​ ​both​ ​superficial​ ​and​ ​deep capillary​ ​plexus​ ​of​ ​the​ ​retinal​ ​vasculature​ ​without​ ​an​ ​exogenous​ ​dye,​ ​unlike​ ​fluorescein angiography,​ ​enabling​ ​better​ ​detection​ ​of​ ​overall​ ​retinal​ ​flow​ ​without​ ​potential​ ​side​ ​effects.​ (Ting et​ ​al.​ ​2017)​​ ​Despite​ ​the​ ​advantages,​ ​the​ ​use​ ​of​ ​OCTA​ ​is​ ​not​ ​as​ ​widespread​ ​as​ ​OCT,​ ​due​ ​to​ ​its cost​ ​and​ ​limited​ ​field​ ​of​ ​view​ ​(FOV)​ ​on​ ​currently​ ​commercially​ ​available​ ​devices,​ ​which decreases​ ​the​ ​ability​ ​to​ ​assess​ ​microvascular​ ​complications​ ​of​ ​retinal​ ​vascular​ ​diseases.​ ​In addition,​ ​OCTA​ ​requires​ ​multiple​ ​acquisitions​ ​in​ ​the​ ​same​ ​anatomic​ ​location,​ ​limiting​ ​the​ ​ability to​ ​acquire​ ​interpretable​ ​images​ ​in​ ​eyes​ ​with​ ​unstable​ ​visual​ ​fixation​ ​and​ ​motion​ ​artifacts​ ​from microsaccades.​(Q.​ ​Zhang​ ​et​ ​al.​ ​2016) Given​ ​the​ ​relationship​ ​of​ ​OCT​ ​and​ ​OCTA,​ ​we​ ​sought​ ​to​ ​explore​ ​the​ ​deep​ ​learning’s​ ​ability​ ​to​ ​first infer​ ​between​ ​structure​ ​and​ ​function,​ ​then​ ​generate​ ​an​ ​OCTA-like​ ​en-face​ ​image​ ​from​ ​structural OCT​ ​image​ ​alone.​ ​Human​ ​graders​ ​struggle​ ​to​ ​identify​ ​all​ ​but​ ​the​ ​largest​ ​vessels​ ​on​ ​structural OCT​ ​scans.​ ​A​ ​successful​ ​model​ ​would​ ​result​ ​in​ ​the​ ​acquisition​ ​of​ ​new​ ​information​ ​from preexisting​ ​databases​ ​given​ ​the​ ​ubiquitous​ ​use​ ​of​ ​OCT​ ​and​ ​may​ ​result​ ​in​ ​en-face​ ​images significantly​ ​less​ ​affected​ ​by​ ​artifacts.​ ​Unlike​ ​current​ ​AI​ ​models​ ​which​ ​are​ ​primarily​ ​targeted towards​ ​classification​ ​or​ ​segmentation​ ​of​ ​images,​ ​to​ ​our​ ​knowledge,​ ​this​ ​is​ ​the​ ​first​ ​application​ ​of artificial​ ​neural​ ​networks​ ​to​ ​generate​ ​a​ ​new​ ​image​ ​based​ ​on​ ​a​ ​different​ ​imaging​ ​modality​ ​data.​ ​In addition,​ ​this​ ​is​ ​the​ ​first​ ​example​ ​in​ ​medical​ ​imaging​ ​to​ ​our​ ​knowledge​ ​where​ ​expert​ ​annotations for​ ​training​ ​deep​ ​learning​ ​models​ ​are​ ​bypassed​ ​by​ ​using​ ​objective,​ ​physiologic​ ​measurements. RESULTS Four​ ​different​ ​model​ ​archetypes​ ​(Figure​ ​1A)​ ​were​ ​designed​ ​to​ ​take​ ​a​ ​single​ ​individual​ ​structural B​ ​scan​ ​image​ ​as​ ​input​ ​​ ​and​ ​provide​ ​an​ ​inferred​ ​flow​ ​B​ ​scan​ ​image​ ​as​ ​output​ ​which​ ​included​ ​5 blocks​ ​of​ ​max​ ​pooling​ ​and​ ​upsampling​ ​with​ ​5​ ​convolutional​ ​filters,​ ​5​ ​blocks​ ​with​ ​10​ ​convolutional filters,​ ​9​ ​blocks​ ​with​ ​9​ ​convolutional​ ​filters,​ ​and​ ​9​ ​blocks​ ​with​ ​18​ ​convolutional​ ​filters.​ ​In​ ​addition for​ ​each​ ​set​ ​of​ ​the​ ​4​ ​models,​ ​3​ ​different​ ​bridge​ ​connections​ ​were​ ​tested:​ ​no​ ​bridge​ ​(similar​ ​to traditional​ ​convolutional​ ​autoencoder​ ​network),​ ​element-wise​ ​summation,​ ​and​ ​copy​ ​+ concatenation.​ ​Each​ ​of​ ​these​ ​models​ ​were​ ​trained​ ​from​ ​random​ ​initialization​ ​with​ ​the​ ​same batch​ ​number,​ ​training/validation​ ​datasets,​ ​optimizer,​ ​and​ ​learning​ ​rate​ ​for​ ​5,000​ ​iterations (Figure​ ​1B)​ ​and​ ​the​ ​deepest​ ​model​ ​with​ ​18​ ​convolution​ ​filters​ ​and​ ​with​ ​copy​ ​+​ ​concatenation bridges​ ​had​ ​the​ ​lowest​ ​MSE​ ​(Figure​ ​1C).​ ​The​ ​final​ ​model​ ​had​ ​a​ ​total​ ​of​ ​7.85​ ​million​ ​trainable parameters​ ​and​ ​has​ ​a​ ​space​ ​complexity​ ​of​ ​90​ ​megabytes.​ ​The​ ​model​ ​received​ ​no​ ​additional information​ ​regarding​ ​the​ ​neighboring​ ​slices.​ ​An​ ​extended​ ​training​ ​session​ ​was​ ​performed​ ​with dropout​ ​layers​ ​for​ ​regularization​ ​(Figure​ ​1D).​ ​After​ ​collecting​ ​independently​ ​inferred​ ​flow​ ​B​ ​scan images,​ ​an​ ​en-face​ ​projection​ ​image​ ​was​ ​created​ ​using​ ​the​ ​same​ ​techniques​ ​as​ ​OCTA. A​ ​total​ ​of​ ​401,098​ ​cross-sectional​ ​structural,​ ​macular​ ​spectral-domain​ ​(SD)​ ​OCT​ ​images​ ​from 873​ ​volumes​ ​were​ ​designated​ ​as​ ​a​ ​training​ ​set:​ ​these​ ​were​ ​presented​ ​to​ ​the​ ​deep​ ​learning model,​ ​and​ ​the​ ​output​ ​was​ ​compared​ ​to​ ​the​ ​corresponding​ ​retina-segmented​ ​OCTA​ ​image. Another​ ​76,928​ ​OCT​ ​images​ ​from​ ​independent​ ​171​ ​cubes​ ​were​ ​used​ ​for​ ​cross-validation against​ ​OCTA​ ​images.​ ​A​ ​held​ ​out​ ​test​ ​set​ ​of​ ​92,606​ ​images​ ​of​ ​202​ ​cubes​ ​from​ ​a​ ​different​ ​set​ ​of patients​ ​was​ ​then​ ​used​ ​for​ ​comparison​ ​of​ ​deep​ ​learning​ ​model​ ​performance​ ​against​ ​the​ ​OCTA images. The​ ​model​ ​was​ ​trained​ ​with​ ​60,000​ ​iterations.​ ​The​ ​learning​ ​curve​ ​with​ ​the​ ​mean​ ​squared​ ​error (MSE)​ ​of​ ​the​ ​training​ ​iterations​ ​and​ ​the​ ​validation​ ​set​ ​are​ ​shown​ ​in​ ​Figure​ ​1B.​ ​The​ ​model achieved​ ​a​ ​minimal​ ​cross-validation​ ​MSE​ ​of​ ​9.9482​ ​x​ ​10​ .​ ​The​ ​weights​ ​that​ ​produced​ ​the​ ​best cross-validation​ ​MSE​ ​were​ ​then​ ​used​ ​for​ ​comparison​ ​against​ ​OCTA.​ ​The​ ​performance​ ​on​ ​the held-out​ ​test​ ​set​ ​achieved​ ​an​ ​MSE​ ​of​ ​7.7665​ ​x​ ​10​ .​ ​The​ ​fidelity​ ​by​ ​peak​ ​signal​ ​to​ ​noise​ ​ratio​ ​was 31.10​ ​db.​ ​​ ​Figure​ ​2​ ​shows​ ​examples​ ​of​ ​deep​ ​learning​ ​inference​ ​of​ ​retinal​ ​flow​ ​from cross-sectional​ ​structural​ ​OCT​ ​images​ ​of​ ​the​ ​held​ ​out​ ​test​ ​set​ ​compared​ ​to​ ​the​ ​corresponding OCTA​ ​images.​ ​From​ ​structural​ ​OCT​ ​images,​ ​the​ ​deep​ ​learning​ ​model​ ​was​ ​able​ ​to​ ​identify​ ​both the​ ​large​ ​and​ ​medium-sized​ ​retinal​ ​vessels​ ​as​ ​well​ ​as​ ​the​ ​retinal​ ​microvasculature​ ​at​ ​a​ ​level​ ​of detail​ ​similar​ ​to​ ​the​ ​OCTA​ ​image.​ ​In​ ​addition,​ ​the​ ​model​ ​identified​ ​small​ ​vessels​ ​that​ ​are​ ​not apparent​ ​on​ ​the​ ​structural​ ​OCT​ ​image.​ ​Furthermore,​ ​the​ ​model​ ​was​ ​able​ ​to​ ​learn​ ​the segmentation​ ​of​ ​the​ ​retina​ ​and​ ​isolate​ ​structural​ ​features​ ​of​ ​the​ ​retina.​ ​Given​ ​that​ ​the​ ​model takes​ ​as​ ​input​ ​only​ ​a​ ​single​ ​structural​ ​B​ ​scan​ ​image,​ ​we​ ​asked​ ​three​ ​masked​ ​independent​ ​retina specialty​ ​trained​ ​experts​ ​to​ ​identify​ ​vessels​ ​on​ ​a​ ​single​ ​structural​ ​B​ ​scan​ ​image.​ ​Comparison​ ​of model​ ​output​ ​to​ ​three​ ​different​ ​masked​ ​clinicians​ ​revealed​ ​that​ ​the​ ​trained​ ​model​ ​was​ ​able​ ​to significantly​ ​outperform​ ​clinicians​ ​in​ ​terms​ ​of​ ​specificity,​ ​positive​ ​predictive​ ​value,​ ​and​ ​negative predictive​ ​value​ ​when​ ​using​ ​OCTA​ ​as​ ​ground​ ​truth. To​ ​examine​ ​the​ ​performance​ ​of​ ​the​ ​model​ ​on​ ​other​ ​retinal​ ​pathologies​ ​outside​ ​of​ ​what​ ​the algorithm​ ​was​ ​trained,​ ​the​ ​weights​ ​from​ ​the​ ​lowest​ ​cross​ ​validation​ ​MSE​ ​were​ ​used​ ​to​ ​infer​ ​flow of​ ​each​ ​cross-sectional​ ​structural​ ​OCT​ ​image​ ​in​ ​a​ ​volume.​ ​Average​ ​projection​ ​of​ ​resulting inferred​ ​flow​ ​volume​ ​was​ ​used​ ​to​ ​create​ ​en-face​ ​projection​ ​maps​ ​of​ ​flow​ ​(Figure​ ​3). Surprisingly,​ ​even​ ​without​ ​three-dimensional​ ​knowledge​ ​of​ ​the​ ​location​ ​of​ ​vessels​ ​nor knowledge​ ​of​ ​the​ ​neighboring​ ​cross​ ​sectional​ ​slice,​ ​the​ ​inferred​ ​flow​ ​by​ ​deep​ ​learning​ ​generated contiguous​ ​vessel​ ​maps​ ​similar​ ​to​ ​OCTA. Compared​ ​to​ ​en-face​ ​projections​ ​of​ ​the​ ​structural​ ​OCT​ ​volumes​ ​(Figure​ ​3​ ​A,​ ​D,​ ​G,​ ​J),​ ​the​ ​AI generated​ ​flow​ ​maps​ ​(Figure​ ​3​ ​B,​ ​E,​ ​H,​ ​K)​ ​show​ ​more​ ​detail​ ​of​ ​the​ ​superficial​ ​retinal vasculature.​ ​The​ ​map​ ​of​ ​retinal​ ​vasculature​ ​generated​ ​by​ ​the​ ​model​ ​was​ ​much​ ​more​ ​detailed​ ​at the​ ​superficial​ ​retina​ ​than​ ​deeper​ ​in​ ​the​ ​retina​ ​and​ ​was​ ​superior​ ​to​ ​structural​ ​OCT​ ​en-face projections.​ ​This​ ​discrepancy​ ​was​ ​easily​ ​demonstrated​ ​in​ ​the​ ​pathologic​ ​eyes,​ ​(Figure​ ​3​ ​E,​ ​H,​ ​K) in​ ​which​ ​the​ ​superficial​ ​capillary​ ​plexus​ ​were​ ​affected​ ​by​ ​ischemia​ ​more​ ​than​ ​deep​ ​capillary plexus.​ ​In​ ​eyes​ ​with​ ​diabetic​ ​ischemia​ ​(Figure​ ​3​ ​E,​ ​F)​ ​and​ ​branch​ ​retinal​ ​vascular​ ​occlusion (Figure​ ​3​ ​H,I),​ ​OCTA​ ​reveals​ ​a​ ​higher​ ​density​ ​of​ ​deep​ ​capillary​ ​plexus​ ​than​ ​our​ ​model’s​ ​flow output.​ ​Intact​ ​cilioretinal​ ​artery​ ​in​ ​the​ ​setting​ ​of​ ​central​ ​retinal​ ​artery​ ​occlusion​ ​(CRAO)​ ​preserves the​ ​superficial​ ​capillary​ ​plexus​ ​in​ ​the​ ​area​ ​perfused​ ​by​ ​cilioretinal​ ​artery.​ ​As​ ​expected,​ ​our model’s​ ​results​ ​were​ ​comparable​ ​to​ ​OCTA​ ​in​ ​the​ ​area​ ​perfused​ ​by​ ​cilioretinal​ ​artery​ ​but​ ​not​ ​able to​ ​show​ ​the​ ​remaining​ ​deep​ ​capillary​ ​plexus​ ​elsewhere​ ​in​ ​the​ ​macula.​ ​(Figure​ ​3​ ​K,​ ​L). When​ ​compared​ ​to​ ​color​ ​fundus​ ​photography​ ​and​ ​en-face​ ​projections​ ​of​ ​structural​ ​OCT volumes,​ ​the​ ​retinal​ ​vasculature​ ​map​ ​generated​ ​by​ ​the​ ​model​ ​was​ ​better​ ​for​ ​visualizing​ ​the superficial​ ​capillary​ ​networks.​ ​As​ ​shown​ ​in​ ​Figure​ ​4,​ ​the​ ​deep​ ​learning​ ​image​ ​highlights​ ​the​ ​area of​ ​capillary​ ​dropout​ ​and​ ​intact​ ​flow.​ ​Both​ ​superficial​ ​arterioles​ ​and​ ​superficial​ ​capillary​ ​networks are​ ​clearly​ ​visible​ ​in​ ​the​ ​area​ ​supplied​ ​by​ ​cilioretinal​ ​artery​ ​on​ ​deep​ ​learning​ ​image.​ ​In​ ​contrast, only​ ​larger​ ​retinal​ ​vessels​ ​are​ ​visible,​ ​and​ ​the​ ​integrities​ ​of​ ​capillary​ ​plexus​ ​are​ ​difficult​ ​to​ ​assess on​ ​the​ ​color​ ​photo​ ​and​ ​structural​ ​OCT​ ​en-face​ ​projections.​ ​Similarly,​ ​Figure​ ​5​ ​shows​ ​that,​ ​for​ ​a normal​ ​eye,​ ​the​ ​retinal​ ​vasculature​ ​map​ ​generated​ ​by​ ​the​ ​model​ ​demonstrates​ ​the​ ​superficial capillary​ ​networks​ ​with​ ​superior​ ​detail​ ​compared​ ​to​ ​both​ ​the​ ​corresponding​ ​color​ ​fundus photograph​ ​and​ ​the​ ​late​ ​phase​ ​fluorescein​ ​angiogram.​ ​OCTA​ ​continues​ ​to​ ​highlight​ ​the​ ​retinal microvasculature​ ​with​ ​the​ ​highest​ ​detail.​ ​​ ​Manual​ ​segmentation​ ​of​ ​vessels​ ​on​ ​all​ ​four​ ​imaging modalities​ ​was​ ​performed​ ​(Figure​ ​6).​ ​For​ ​second​ ​order​ ​vessels,​ ​87.5%,​ ​97.5%,​ ​and​ ​100%​ ​of​ ​the vessels​ ​were​ ​identified​ ​by​ ​color,​ ​FA,​ ​and​ ​deep​ ​learning​ ​generated​ ​flow​ ​maps.​ ​Deep​ ​learning was​ ​able​ ​to​ ​identify​ ​significantly​ ​more​ ​third​ ​order​ ​vessels​ ​compared​ ​to​ ​color​ ​images​ ​(p​ ​=​ ​0.0320) and​ ​was​ ​able​ ​to​ ​identify​ ​significantly​ ​more​ ​fourth​ ​order​ ​vessels​ ​compared​ ​to​ ​both​ ​color​ ​and​ ​FA images​ ​(p​ ​=​ ​1.86​ ​x​ ​10​​ ​and​ ​5.01​ ​x​ ​10​​ ​respectively). DISCUSSION Our​ ​study​ ​demonstrates​ ​that​ ​a​ ​deep​ ​learning​ ​model​ ​can​ ​be​ ​trained​ ​to​ ​recognize​ ​features​ ​of​ ​OCT images​ ​that​ ​allow​ ​successful​ ​identification​ ​of​ ​retinal​ ​vasculature​ ​on​ ​cross​ ​sectional​ ​OCT​ ​scans in​ ​a​ ​fully​ ​automated​ ​fashion​ ​and​ ​generate​ ​en-face​ ​projection​ ​flow​ ​maps.​ ​The​ ​deep​ ​learning model​ ​identified​ ​both​ ​the​ ​retinal​ ​vessels​ ​that​ ​were​ ​easily​ ​seen​ ​on​ ​structural​ ​OCT​ ​b-scan​ ​images as​ ​well​ ​as​ ​the​ ​retinal​ ​microvasculature​ ​that​ ​was​ ​not​ ​apparent​ ​to​ ​the​ ​clinician​ ​on​ ​standard​ ​OCT (Figure​ ​2)​ ​and​ ​showed​ ​significantly​ ​more​ ​retinal​ ​vessels​ ​compared​ ​to​ ​structural​ ​OCT​ ​en-face projections,​ ​color​ ​and​ ​FA​ ​images.​ ​Surprisingly​ ​deep​ ​learning​ ​was​ ​able​ ​to​ ​generate​ ​detailed​ ​flow maps​ ​of​ ​the​ ​retinal​ ​vessels​ ​in​ ​a​ ​variety​ ​of​ ​retinal​ ​conditions​ ​using​ ​standard,​ ​ubiquitously available​ ​structural​ ​imaging. Taking​ ​advantage​ ​of​ ​an​ ​already​ ​existing​ ​imaging​ ​modality​ ​as​ ​the​ ​ground​ ​truth,​ ​our​ ​study bypasses​ ​the​ ​need​ ​to​ ​generate​ ​expert​ ​annotations​ ​entirely.​ ​Furthermore,​ ​acquiring​ ​a​ ​retinal vascular​ ​map​ ​from​ ​OCT​ ​via​ ​deep​ ​learning​ ​enables​ ​the​ ​comparison​ ​of​ ​retinal​ ​vascular​ ​structure versus​ ​function​ ​of​ ​retinal​ ​vasculature​ ​using​ ​OCT​ ​and​ ​OCTA,​ ​respectively.​ ​One​ ​of​ ​the​ ​potential mechanisms​ ​by​ ​which​ ​deep​ ​learning​ ​infers​ ​flow​ ​from​ ​structural​ ​images​ ​may​ ​be​ ​similar​ ​to speckle-variance​ ​(SV)​ ​processing​ ​method.​ ​​ ​SV​ ​imaging​ ​measures​ ​decorrelation​ ​between​ ​the OCT​ ​signals​ ​that​ ​are​ ​generated​ ​by​ ​speckle​ ​or​ ​backscattered​ ​light​ ​from​ ​biological tissues.​(Mahmud​ ​et​ ​al.​ ​2013;​ ​A.​ ​Zhang​ ​et​ ​al.​ ​2015)​​ ​Different​ ​speckle​ ​patterns​ ​are​ ​created​ ​due​ ​to moving​ ​particles​ ​in​ ​biological​ ​tissues​ ​such​ ​as​ ​red​ ​blood​ ​cells,​ ​thus​ ​enabling​ ​measuring​ ​flow. However​ ​SV​ ​imaging​ ​requires​ ​repeated​ ​imaging​ ​in​ ​the​ ​same​ ​anatomic​ ​location,​ ​whereas​ ​the algorithm​ ​presented​ ​here​ ​is​ ​able​ ​to​ ​infer​ ​flow​ ​from​ ​a​ ​single​ ​structural​ ​OCT​ ​scan.​ ​Thus,​ ​deep learning​ ​may​ ​be​ ​detecting​ ​the​ ​likely​ ​decorrelation​ ​that​ ​exists​ ​on​ ​a​ ​single​ ​scan​ ​based​ ​on​ ​trained relationship​ ​between​ ​OCT​ ​and​ ​OCTA. The​ ​novel​ ​application​ ​of​ ​deep​ ​learning​ ​in​ ​our​ ​study​ ​infers​ ​flow​ ​from​ ​traditional​ ​OCT​ ​images.​ ​This finding​ ​has​ ​significant​ ​clinical​ ​applications.​ ​First,​ ​OCT​ ​is​ ​the​ ​most​ ​commonly​ ​performed​ ​eye procedure,​ ​thus​ ​resulting​ ​in​ ​extensive​ ​OCT​ ​databases​ ​in​ ​most​ ​clinics​ ​(including​ ​those​ ​acquired before​ ​OCTA​ ​was​ ​available).​ ​This​ ​large​ ​imaging​ ​cohort​ ​may​ ​allow​ ​us​ ​to​ ​determine​ ​the​ ​natural history​ ​of​ ​vascular​ ​changes,​ ​blood​ ​flow,​ ​and​ ​clinical​ ​outcomes​ ​in​ ​retinal​ ​diseases,​ ​similar​ ​to previous​ ​studies​ ​involving​ ​fundus​ ​photographs​(R.​ ​Klein​ ​et​ ​al.​ ​2004,​ ​2007)​​ ​but​ ​allowing​ ​much precise​ ​3D​ ​volumetric​ ​information​ ​of​ ​retinal​ ​vasculature​ ​and​ ​thickness​ ​of​ ​retinal​ ​layers.​ ​Second, we​ ​do​ ​not​ ​know​ ​whether​ ​the​ ​output​ ​of​ ​our​ ​deep​ ​learning​ ​algorithm​ ​is​ ​structural​ ​or​ ​functional information​ ​given​ ​that​ ​the​ ​input​ ​was​ ​strictly​ ​based​ ​on​ ​structural​ ​images​ ​but​ ​the​ ​training​ ​was performed​ ​with​ ​functional​ ​data​ ​(OCTA).​ ​If​ ​the​ ​algorithm​ ​is​ ​indeed​ ​providing​ ​only​ ​structural​ ​map of​ ​the​ ​vasculature,​ ​then​ ​the​ ​results​ ​may​ ​allow​ ​us​ ​to​ ​compare​ ​the​ ​discrepancy​ ​between​ ​structure and​ ​function​ ​when​ ​we​ ​compare​ ​them​ ​to​ ​OCTA​ ​images.​ ​With​ ​longitudinal​ ​data,​ ​we​ ​may​ ​discern when​ ​the​ ​structural​ ​changes​ ​occurs:​ ​prior​ ​to​ ​the​ ​decline​ ​in​ ​function​ ​or​ ​vice​ ​versa.​ ​Future comparisons​ ​of​ ​the​ ​OCTA​ ​and​ ​deep​ ​learning​ ​images​ ​of​ ​the​ ​eyes​ ​that​ ​underwent​ ​a​ ​recent vascular​ ​insult,​ ​in​ ​which​ ​a​ ​clear​ ​difference​ ​exists​ ​between​ ​structure​ ​and​ ​function​ ​would​ ​be useful.​ ​More​ ​research​ ​is​ ​needed​ ​to​ ​establish​ ​the​ ​utility​ ​of​ ​applying​ ​deep​ ​learning​ ​to​ ​structurally correlated​ ​images,​ ​but​ ​a​ ​similar​ ​principle​ ​could​ ​be​ ​applied​ ​in​ ​different​ ​fields​ ​of​ ​medicine​ ​where structural​ ​imaging​ ​is​ ​routinely​ ​obtained​ ​and​ ​functional​ ​imaging​ ​data​ ​is​ ​available​ ​for​ ​use​ ​of​ ​the ground​ ​truth,​ ​such​ ​as​ ​computerized​ ​tomography​ ​or​ ​magnetic​ ​resonance​ ​imaging. In​ ​comparison​ ​to​ ​structural​ ​OCT​ ​en-face​ ​projections,​ ​we​ ​show​ ​that​ ​the​ ​deep​ ​learning​ ​inferred flow​ ​maps​ ​are​ ​able​ ​to​ ​provide​ ​better​ ​definition​ ​of​ ​retinal​ ​vessels​ ​(Figures​ ​3,​ ​4).​ ​Powner​ ​et​ ​al.​ ​has previously​ ​shown​ ​that​ ​en-face​ ​projections​ ​of​ ​the​ ​structural​ ​OCT​ ​volumes​ ​leave​ ​behind​ ​basement membranes​ ​which​ ​are​ ​unperfused​ ​but​ ​will​ ​appear​ ​hyperreflective​ ​on​ ​the​ ​structural​ ​OCT imaging.​(Powner​ ​et​ ​al.​ ​2016)​​ ​This​ ​suggests​ ​that​ ​the​ ​AI​ ​generated​ ​flow​ ​maps​ ​may​ ​have​ ​more clinical​ ​utility​ ​than​ ​en-face​ ​projections​ ​of​ ​structural​ ​OCT​ ​volumes​ ​since​ ​the​ ​latter​ ​can​ ​not distinguish​ ​between​ ​perfused​ ​and​ ​unperfused​ ​vessels. In​ ​our​ ​work,​ ​we​ ​utilized​ ​a​ ​U​ ​shaped​ ​autoencoder​ ​network​ ​as​ ​the​ ​final​ ​model​ ​that​ ​has​ ​traditionally been​ ​used​ ​for​ ​semantic​ ​medical​ ​segmentation.​ (Ronneberger,​ ​Fischer,​ ​and​ ​Brox​ ​2015)​​ ​This deep​ ​neural​ ​network​ ​architecture​ ​uses​ ​bridges​ ​to​ ​maintain​ ​high​ ​resolution​ ​spatial​ ​information that​ ​is​ ​normally​ ​lost​ ​during​ ​pooling​ ​operations.​ ​In​ ​addition,​ ​deeper​ ​neural​ ​networks​ ​have generally​ ​been​ ​found​ ​to​ ​improve​ ​performance​ ​which​ ​has​ ​been​ ​shown​ ​in​ ​the​ ​computer​ ​vision research​ ​with​ ​improved​ ​accuracy​ ​with​ ​ImageNet​ ​image​ ​classification​ ​as​ ​networks​ ​became deeper.​(Simonyan​ ​and​ ​Zisserman​ ​2014;​ ​He​ ​et​ ​al.​ ​2015;​ ​Szegedy​ ​et​ ​al.​ ​2015)​ ​ ​With​ ​our​ ​data,​ ​we have​ ​empirically​ ​found​ ​that​ ​the​ ​copy​ ​and​ ​concatenation​ ​bridge​ ​with​ ​deeper​ ​number​ ​of convolutional​ ​layers​ ​led​ ​to​ ​the​ ​best​ ​performance​ ​compared​ ​to​ ​models​ ​with​ ​shallower​ ​networks, no​ ​bridge​ ​connections,​ ​and​ ​element-wise​ ​summation​ ​bridge​ ​connections.​ ​Future​ ​work​ ​could include​ ​further​ ​optimization​ ​and​ ​hyperparameter​ ​model​ ​selection​ ​and​ ​comparison​ ​to​ ​other architectures​ ​such​ ​as​ ​V-net,​(Milletari,​ ​Navab,​ ​and​ ​Ahmadi​ ​2016)​​ ​recurrent​ ​convolutional layers,​(Liang​ ​and​ ​Hu​ ​2015)​​ ​two-pathway​ ​convolutional​ ​networks,​(Havaei​ ​et​ ​al.​ ​2017)​​ ​and​ ​hybrid models​ ​with​ ​convolutional​ ​layers​ ​with​ ​recurrent​ ​network​ ​layers. More​ ​broadly,​ ​a​ ​similar​ ​approach​ ​could​ ​have​ ​application​ ​in​ ​many​ ​other​ ​imaging​ ​modalities, where​ ​the​ ​same​ ​object​ ​is​ ​imaged​ ​with​ ​sensitivity​ ​to​ ​different​ ​properties​ ​of​ ​the​ ​object​ ​that​ ​is​ ​being imaged.​ ​For​ ​example,​ ​radiological/MRI​ ​measurements​ ​of​ ​the​ ​same​ ​body​ ​part​ ​are​ ​routinely conducted​ ​with​ ​different​ ​contrasts,​ ​taking​ ​advantage​ ​of​ ​the​ ​sensitivity​ ​of​ ​different​ ​contrasts​ ​to different​ ​properties​ ​of​ ​the​ ​tissue.​ ​While​ ​this​ ​allows​ ​measurements​ ​of​ ​different​ ​tissue​ ​properties,​ ​it is​ ​also​ ​time-consuming.​ ​In​ ​some​ ​cases,​ ​measurements​ ​that​ ​are​ ​highly​ ​sensitive​ ​to​ ​certain​ ​tissue properties​ ​may​ ​require​ ​invasive​ ​injection​ ​of​ ​contrast​ ​agents,​ ​or​ ​exposure​ ​to​ ​x-ray​ ​radiation.​ ​The present​ ​results​ ​demonstrate​ ​that​ ​even​ ​a​ ​very​ ​small​ ​amount​ ​of​ ​sensitivity​ ​to​ ​variations​ ​in​ ​a​ ​tissue property​ ​may​ ​be​ ​enough​ ​for​ ​a​ ​deep​ ​neural​ ​network​ ​algorithm​ ​to​ ​detect​ ​variations​ ​in​ ​the dependent​ ​image​ ​properties,​ ​enabling​ ​accurate​ ​inference​ ​of​ ​the​ ​physiological​ ​features​ ​of​ ​the imaged​ ​body​ ​part,​ ​even​ ​when​ ​these​ ​features​ ​are​ ​not​ ​readily​ ​visible​ ​to​ ​an​ ​expert,​ ​and undetectable​ ​by​ ​means​ ​of​ ​other​ ​image​ ​processing​ ​algorithms.​ ​For​ ​example,​ ​MR​ ​angiography (MRA)​ ​and​ ​anatomical​ ​MRI​ ​are​ ​often​ ​both​ ​required​ ​for​ ​imaging​ ​of​ ​soft​ ​tissue​ ​and​ ​imaging​ ​of blood​ ​vessels​ ​in​ ​the​ ​same​ ​organ.​ ​If​ ​the​ ​anatomical​ ​MRI​ ​possesses​ ​subtle​ ​sensitivity​ ​to​ ​the structure​ ​of​ ​the​ ​blood​ ​vessels,​ ​as​ ​demonstrated​ ​in​ ​the​ ​present​ ​study​ ​for​ ​OCT,​ ​it​ ​is​ ​possible​ ​that information​ ​analogous​ ​that​ ​derived​ ​from​ ​MRA​ ​could​ ​be​ ​inferred​ ​directly​ ​from​ ​an​ ​anatomical​ ​MRI scan. Our​ ​approach​ ​has​ ​a​ ​number​ ​of​ ​limitations.​ ​The​ ​data​ ​collected​ ​for​ ​this​ ​study​ ​was​ ​done​ ​at​ ​a​ ​single academic​ ​center​ ​with​ ​a​ ​device​ ​from​ ​a​ ​single​ ​manufacturer​ ​and​ ​a​ ​consistent​ ​imaging​ ​protocol. While​ ​this​ ​may​ ​limit​ ​the​ ​immediate​ ​generalizability​ ​of​ ​this​ ​method,​ ​the​ ​weights​ ​learned​ ​in​ ​this work​ ​could​ ​be​ ​used​ ​as​ ​the​ ​starting​ ​point​ ​for​ ​transfer​ ​learning,​ (Caruana​ ​1995;​ ​Bengio​ ​and​ ​Others 2012)​​ ​allowing​ ​the​ ​model​ ​to​ ​learn​ ​to​ ​infer​ ​with​ ​images​ ​from​ ​other​ ​devices​ ​rapidly,​ ​and​ ​with substantially​ ​less​ ​data.​ ​Additionally,​ ​future​ ​studies​ ​will​ ​need​ ​to​ ​evaluate​ ​the​ ​clinical​ ​correlations between​ ​our​ ​deep​ ​learning​ ​inferred​ ​flow​ ​maps​ ​and​ ​retinal​ ​perfusion​ ​which​ ​would​ ​include oxygenation​ ​of​ ​vascularized​ ​tissue,​ ​tissue​ ​oxygen​ ​consumption,​ ​and/or​ ​flow​ ​velocity. In​ ​conclusion,​ ​we​ ​show​ ​that​ ​deep​ ​learning​ ​is​ ​able​ ​to​ ​generate​ ​flow​ ​maps​ ​of​ ​superficial​ ​retinal circulation​ ​using​ ​structural​ ​OCT​ ​images​ ​alone.​ ​This​ ​approach​ ​may​ ​be​ ​used​ ​to​ ​analyze​ ​existing OCT​ ​datasets​ ​or​ ​be​ ​integrated​ ​into​ ​existing​ ​OCT​ ​machines​ ​today.​ ​In​ ​addition,​ ​this​ ​methodology of​ ​inferring​ ​weakly​ ​correlated​ ​images​ ​may​ ​be​ ​useful​ ​in​ ​many​ ​other​ ​imaging​ ​applications. AUTHOR​ ​CONTRIBUTIONS Conception​ ​and​ ​design​ ​(CSL,​ ​AYL,​ ​AT);​ ​analysis​ ​and​ ​interpretation​ ​(CSL,​ ​AJT,​ ​YW,​ ​SX,​ ​ASR, AT,​ ​RKW,​ ​AYL);​ ​writing​ ​the​ ​article​ ​(CSL,​ ​AJT,​ ​AYL);​ ​critical​ ​revision​ ​of​ ​the​ ​article​ ​(YW,​ ​SX,​ ​ASR, NPD,​ ​QZ,​ ​AT,​ ​RKW);​ ​final​ ​approval​ ​of​ ​the​ ​article​ ​(CSL,​ ​AJT,​ ​YW,​ ​SX,​ ​ASR,​ ​NPD,​ ​QZ,​ ​AT,​ ​RKW, AYL);​ ​data​ ​collection​ ​(CSL,​ ​QZ,​ ​RKW,​ ​AYL);​ ​statistical​ ​expertise​ ​(CSL,​ ​AYL);​ ​literature​ ​search (CSL,​ ​AJT,​ ​NPD). CONFLICT​ ​OF​ ​INTEREST​ ​DISCLOSURES Ruikang​ ​Wang​ ​received​ ​research​ ​support​ ​from​ ​Carl​ ​Zeiss​ ​Meditec,​ ​Inc.​ ​and​ ​co-owns​ ​a​ ​patent​ ​of OCTA​ ​technology​ ​with​ ​Oregon​ ​Health​ ​&​ ​Science​ ​University.​ ​No​ ​other​ ​conflicts​ ​of​ ​interest​ ​exist for​ ​the​ ​remaining​ ​authors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical Applications of Optical Coherence Tomography in Ophthalmology

Assessment of the peripapillary nerve fiber layer and macular thickness can be determined in ophthalmology using optical coherence tomography (OCT). Decreased nerve fiber layer thickness and macular ganglion cell thickness in optic nerve ischemia have been correlated with visual field loss. OCT allows deep optic nerve head evaluation which helps understand pathophysiology of diseases.  Furtherm...

متن کامل

Evaluation of Optical Coherence Tomography Angiography Findings in Patients with Branch Retinal Vein Occlusion

Purpose: To analyze the correlation of optical coherence tomography angiography (OCTA) findings with visual acuity (VA) in patients with branch retinal vein occlusion (BRVO). Methods: This cross-sectional study was performed on 20 eyes of 20 patients with unilateral BRVO involving the macula referred to the ophthalmology clinic of Rassoul Akram Hospital. OCTA imaging was conducted for all patie...

متن کامل

Retinal Ganglion Cell Complex in Alzheimer Disease: Comparing Ganglion Cell Complex and Central Macular Thickness in Alzheimer Disease and Healthy Subjects Using Spectral Domain-Optical Coherence Tomography

Introduction: Alzheimer disease (AD) is the most common form of dementia worldwide. The modalities to diagnose AD are generally expensive and limited. Both the central nervous system (CNS) and the retina are derived from the cranial neural crest; therefore, changes in retinal layers may reflect changes in the CNS tissue. Optical coherence tomography (OCT) machine can show delicate retinal layer...

متن کامل

Effects of Laser Physical Parameters on Lesion Size in Retinal Photocoagulation Surgery: Clinical OCT and Experimental Study

Introduction: The aim of the present study was to determine burn intensity in retinal laser photocoagulation based on laser parameters; wavelength, power, beam size and pulse duration, using Optical Coherence Tomography (OCT), fundus camera, physical eye model and computer simulation in a clinical study.Materials and Methods: Participants were 10 adult patients between 50-80 years with prolifer...

متن کامل

Speckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images

Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...

متن کامل

Correlation between Visual Acuity and Optical Coherence Tomography-Measured Retinal Thickness in Diabetic Macular Edema

Background and Objective: Diabetic macular edema (DME) is one of the common complications of diabetes which significantly accounts for preventable visual impairment and blindness. Central macular thickness (CMT) is a feature found in DME patients. This study aims to determine the relationship between optical coherence tomography (OCT)-measured CMT and visual acuity (VA) in patients with DME bef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.08925  شماره 

صفحات  -

تاریخ انتشار 2017